Estimating the Probability of Winning a College Basketball Game

Ryan J. Parker ryan@basketballgeek.com

College of Charleston
March 21, 2010

Why Win Probabilities Matter

- Classical ranking says the higher ranking team wins

1 Kansas

Why Win Probabilities Matter: Answering Questions

- Who is the favorite to win the tournament?
- How often does Kentucky make the Final Four?
- Will St. Mary's advance to the Sweet 16 ?

Why Win Probabilities Matter: Taking Your Friend's \$\$

- Essential for non-standard point systems

Tournament Path Matters: Extreme Example

$\frac{\text { Rank }}{1}$		Win Probability
2	Team A	51%
2	Team B	49%
3		
4	Team C	100%
	Team D	0%

- Assume Team A and Team B beat Team C 65\% of the time:
- Championship Odds:

Team A: 33\%
Team B: 32\%
Team C: 35\%

- Classical ranking chooses Team A, but Team C has the best chance of winning

Actual Tournament Path Examples

- 2003: \#2 Kentucky over \#1 Kansas to win championship
- Kentucky 14\%, Kansas 13\%
- 2010: \#2 Kansas over \#1 Duke to win championship
- Kansas 24.8\%, Duke 24.5\%
- 2010: \#18 Villanova more likely than \#15 Baylor to make Elite 8
- Villanova 35\%, Baylor 33\%

Data to Rank: Points per Possession

CofC's Points Scored per Possession versus UNC

- Efficiency: mean number of points scored per possession
- Removes effect of pace on a team's points scored and allowed
- Possessions estimated with FGA - OR + TO $+0.475 \times$ FTA

Linear Model of Difference in Per Game Efficiency

- $D_{i j}$: difference in team i's and team j's efficiency
- Linear regression where we assume

$$
D_{i j} \sim \mathrm{~N}\left(\alpha(\text { home })+\beta_{i}-\beta_{j}, \sigma_{d}^{2}\right)
$$

- β_{i} : rating for team i
- home $= \begin{cases}1 & \text { if team } i \text { is at home } \\ -1 & \text { if team } i \text { is away } \\ 0 & \text { otherwise }\end{cases}$
- When $D_{i j}>0$, team i beats team j

Assumption of Normality

Histogram of residuals

Normal Q-Q Plot

Estimates from the Linear Model for 2010

- Home Court: $\hat{\alpha}=0.05=3.5$ points
- Standard Deviation: $\hat{\sigma_{d}}=0.15=10.5$ points

Estimated UNC at CofC Efficiency Difference

- $\operatorname{Pr}($ CofC Win $)=0.30$

Answering Questions with the Linear Model

- Who is the favorite to win the tournament?
- Kansas, 25%
- How often does Kentucky make the Final Four?
- 17\%
- Will St. Mary's advance to the Sweet 16 ?
- 25\%

Multinomial Model of Point Probabilities

- Estimates probability of scoring points on possessions
- We consider $0,1,2$, or ≥ 3 points
- Multinomial Logistic Regression:

$$
\log \left(\frac{\pi_{i}}{\pi_{0}}\right)=\alpha+\beta_{0}(\text { home })+\beta_{i}+\beta_{j}, \text { for } i=1,2,3
$$

- β_{i} : rating for team i
- home $= \begin{cases}1 & \text { if team } i \text { is at home } \\ -1 & \text { if team } i \text { is away } \\ 0 & \text { otherwise }\end{cases}$

Estimating Points Scored on Possessions

- Play-by-play data is scarce
- Data can be estimated using the box score
- For example, to estimate the number of zeros:
- $0.97 \times$ FGA-FGM $+0.27 \times$ FTA-FTM $-0.96 \times O R+1.02 \times$ TO
- Similar models for ones, twos, and \geq threes

Estimates from the Multinomial Model for 2010

Estimated UNC at CofC Points Scored per Possession

- $\operatorname{Pr}($ CofC Win $)=0.26$ (Linear Model: 0.30$)$

Multinomial Model: Probabilities of Winning

- Estimated with simulation
- Assumptions:
- Possessions are independent
- Each team will have n offensive possessions
- For the desired number of simulations:
(1) Simulate n possessions using model probabilities
(2) Determine winner of game (ignore ties)
- Use results to estimate probability of winning

Answering Questions with the Multinomial Model

- Who is the favorite to win the tournament?
- Duke, 21\% (Linear Model: Kansas, 25\%)
- How often does Kentucky make the Final Four?
- 18\% (Linear Model: 17\%)
- Will St. Mary's advance to the Sweet 16 ?
- 26\% (Linear Model: 25\%)

Model Comparison: ESPN Scores

- Earn $2^{r-1} \times 10$ points for rounds $r=1,2, \ldots, 6$
- Maximum of 1920 points possible

Season	Linear	Multinomial	Difference
2003	790	590	200
2004	740	810	-70
2005	1310	1450	-140
2006	730	670	60
2007	1010	730	280
2008	1480	1570	-90
2009	750	780	-30
Mean	973	943	30

- Multinomial model won 4 out of 7 tournaments

Model Comparison: Differing Picks

- What happens when models disagree?
- From 2003 to 2010 ($1^{\text {st }}$ round), models disagreed 36 times
- Linear model selected 22 correctly ($\hat{\pi}=22 / 36=61 \%$)
- Multinomial model selected 14 correctly (39\%)
- $95 \% \mathrm{Cl}$ for π : (43%, 77%)

Future Work

- Calculate confidence intervals
- Logistic regression/Markov chain (LRMC) model comparison
- Estimate model prediction error

References

- Ken Pomeroy, Stats Explained, http://kenpom.com/blog/index.php/C24/P5/
- Kvam, P. and J.S. Sokol, A logistic regression/Markov chain model for NCAA basketball, Naval Research Logistics 53, pp. 788-803

