Applying Multilevel Models to Sports Rating Problems

Ryan J. Parker

College of Charleston

August 14, 2009

→ ∃ →

Who Cares About Ranking?

イロト イヨト イヨト イヨ

• Motivation: modeling data structured into groups

- Academics: Students grouped by the school they attend
- Basketball: Shots grouped by the player that attempted them
- Regression where coefficients are modeled
- These models give us a handle on variation between groups
- Can better estimate the effects of groups with small samples

 Consider a linear regression model that uses indicator variables to estimate group effects for *j* = 1,..., *J* groups using *i* = 1,..., *n* observations:

$$y_i \sim N(\alpha_{j[i]}, \sigma_y^2)$$

• The multilevel model formulation:

$$\begin{array}{rcl} \mathbf{y}_i & \sim & \operatorname{N}(\alpha_{j[i]}, \sigma_{\mathbf{y}}^2) \\ \alpha_j & \sim & \operatorname{N}(\mu_{\alpha}, \sigma_{\alpha}^2) \end{array}$$

- Group effects are assumed to come from a normal distribution, with the mean μ_{α} and variance σ_{α}^2 estimated from the data
- *j*[*i*] is the index for the group associated with observation *i*

Classical Regression versus Multilevel Modeling

- Goal: Predict free throw shooting percentages of NBA centers
- Classical logistic regression model:

$$oldsymbol{y}_i \sim ext{Binomial}(oldsymbol{n}_i, heta_i) \ ext{logit}(heta_i) = ext{log}\left(rac{ heta_i}{ ext{1}- heta_i}
ight) = eta_i$$

• Multilevel logistic regression model:

$$egin{array}{rcl} m{y}_i &\sim & ext{Binomial}(m{n}_i, heta_i) \ & ext{logit}(m{ heta}_i) &= & m{eta}_i \ & m{eta}_i &\sim & ext{N}(\mu_eta, \sigma_eta^2) \end{array}$$

- Models the probability that player *i* makes a free throw attempt
- Data from three NBA regular seasons (2006-2007 to 2008-2009)

Classical vs Multilevel: Fit Details

- Classical fit estimates some $\beta_i = \infty$ or $-\infty$
- Multilevel fit estimates: **2006-2007**: $\hat{\mu}_{\beta} = 0.616$, $\hat{\sigma}_{\beta} = 0.512$, 95% CI: (40.4%, 83.5%) **2007-2008**: $\hat{\mu}_{\beta} = 0.637$, $\hat{\sigma}_{\beta} = 0.444$, 95% CI: (44.2%, 81.9%) **2008-2009**: $\hat{\mu}_{\beta} = 0.695$, $\hat{\sigma}_{\beta} = 0.471$, 95% CI: (44.3%, 83.5%)

Classical vs Multilevel: Fit Comparison (2008-2009)

Ryan J. Parker (College of Charleston) Multilevel Models+Sports Rating Problems

August 14, 2009

Gazing into the crystal ball:

		Classical		Multilevel		Difference	
Model	Actual	MAE	RMSE	MAE	RMSE	MAE	RMSE
2007	2008	9.1%	13.9%	7.0%	10.2%	2.1%	3.7%
2008	2009	8.2%	12.6%	7.7%	11.7%	0.6%	0.9%
2007	2009	8.4%	12.7%	7.2%	10.1%	1.3%	0.9%
2007	08+09	7.5%	11.8%	5.5%	8.0%	2.0%	3.8%
07+08	2009	7.7%	11.9%	7.1%	10.8%	0.6%	1.1%

Minimum 10 attempts in Actual data set

MAE: Mean Absolute Error = $\frac{1}{n} \sum_{i=1}^{n} |predicted_i - actual_i|$ **RMSE**: Root Mean Squared Error = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (predicted_i - actual_i)^2}$

NBA Example: 3pt Shooting

- Goal: Predict a player's future 3pt field goal percentage
- What is home court advantage worth?
- What is the difference between regular and corner 3pt shots?
- Data from seven NBA regular seasons (2002-2003 to 2008-2009)

Basic multilevel model for each position:

$$egin{array}{rcl} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{array}{lll} egin{arr$$

Estimates by position:

	μ_eta	σ_{β}^{2}	Mean 3FG%	95% CI
PG	-0.586	0.127	35.8%	(30.3%, 41.7%)
SG	-0.547	0.121	36.7%	(31.3%, 42.3%)
SF	-0.595	0.120	35.5%	(30.3%, 41.1%)
PF+C	-0.754	0.186	32.0%	(24.6%, 40.4%)
All	-0.595	0.130	35.5%	(29.9%, 41.6%)

• PF+C only group statistically significant from the others

• Model for home court advantage and shot location:

$$egin{array}{rcl} m{y}_i &\sim & ext{Binomial}(m{n}_i, m{ heta}_i) \ & ext{logit}(m{ heta}_i) &= & m{ heta}_i + \gamma(ext{home}) + \delta(ext{corner3}) \ & m{ heta}_i &\sim & \mathbb{N}(\mu_eta, \sigma_m{ heta}^2) \end{array}$$

- home: 1 if shot attempt taken at home, 0 otherwise

 γ measures home court advantage
- **corner3**: 1 if shot attempt taken from the corner, 0 otherwise δ measures difference between regular and corner 3pt shots

3pt Shooting: Player Ratings

Classical Results

 Ryan J. Parker (College of Charleston)
 Multilevel Models+Sports Rating Problems
 August

3pt Shooting: Home Court Advantage

Estimated Home Court Advantage for Individual 3pt Shots

Difference of \sim 3 points per 100 shot attempts

3pt Shooting: Regular versus Corner 3pt Shots

Estimated Corner 3pt Shot Advantage for Individual 3pt Shots

Difference of \sim 9 points per 100 shot attempts

3pt Shooting: Year to Year Predictions

MAE	RMSE	Mean	SD	95% CI
4.6%	6.2%	0.5%	6.1%	(-11.6%, 12.5%)

Year to Year Predictions: Min 25 Attempts

< A

3pt Shooting: Predicting Different Player Groups

Group	MAE	RMSE	Mean	SD	95% CI
High to High	2.9%	3.7%	-0.9%	3.6%	(-8.0%, 6.2%)
Low to High	3.6%	4.7%	-0.5%	4.8%	(-9.8%, 8.8%)

High to High: > 150 attempts both years (n=315), Low to High: < 50 and > 100 attempts year to year (n=69)

- Logistic regression model for paired comparisons
- Examples of this type of data:
 - Product Prefs: Bud Light or Miller Lite? Miller Lite or Coors Light?
 - Tennis: Agassi or Federer? Federer or Roddick?
- When *i* is compared to *j*:

$$ext{logit}(heta_{ij}) = ext{log}\left(rac{ heta_{ij}}{ extsf{1}- heta_{ij}}
ight) = eta_i - eta_j$$

• To estimate the probability that *i* is preferred to *j*:

$$\hat{eta}_{jj} = \texttt{logit}^{-1}(\hat{eta}_i - \hat{eta}_j) = \exp(\hat{eta}_i - \hat{eta}_j)/(1 + \exp(\hat{eta}_i - \hat{eta}_j))$$

- Model the ratings β_t
- Hierarchical formulation:

$$egin{array}{rcl} Y_{ij} &\sim & ext{Bernoulli}(heta_{ij}) \ &=& eta_i - eta_j \ η_t &\sim & ext{N}(\mathbf{0}, \sigma_eta^2) \ &\sigma_eta^2 &\sim & ext{Gamma}(m{a}, m{b}), \,m{a} \, ext{and} \, m{b} \, ext{known} \end{array}$$

A .

- E - N

2008 CFB Example: Hierarchical Formulation

- Motivation: Classical Bradley-Terry model estimates some ratings to be ∞ or $-\infty$
- Hierarchical Bradley-Terry model for college football:

$$\begin{array}{rcl} Y_{ij} & \sim & \texttt{Bernoulli}(\theta_{ij}) \\ \texttt{logit}(\theta_{ij}) & = & \alpha(\texttt{home}) + \beta_i - \beta_j \\ \alpha & \sim & \texttt{N}(\mu_\alpha, \sigma_\alpha^2), \, \mu_\alpha \text{ and } \sigma_\alpha^2 \, \texttt{known} \\ \beta_t & \sim & \texttt{N}(\mathbf{0}, \sigma_\beta^2) \\ \sigma_\beta^2 & \sim & \texttt{Gamma}(a, b), \, a \, \texttt{and} \, b \, \texttt{known} \end{array}$$

Prior Params: μ_α = 0 and σ²_α = 100; a = 0.01 and b = 100.
 home = 1 if *i* is at home; -1 if *i* is away; 0 if neutral site

2008 CFB Example: Prior Distributions

Prior Distribution for σ_B^2 (Variance of Rating Distribution)

2008 CFB Example: Hierarchical Fit

Estimates:

- $\hat{\alpha} = 0.50$ and 95% credible interval for α : (0.30, 0.71) Home Win%: 62% or (57%, 67%) for evenly matched teams
- $\hat{\sigma}_{\beta} = 1.41$ and 95% credible interval for σ_{β} : (1.08, 1.77)

Estimated Rating Distributions

2008 CFB Example: Hierarchical Fit (cont)

Top Rated Team: Oklahoma

Team	Pr(Oklahoma Better)	Pr(Oklahoma Wins)
Utah	51.3%	50.9%
Texas	55.0%	53.6%
Boise State	56.3%	54.9%
Florida	59.9%	57.1%
Texas Tech	59.7%	57.2%
Alabama	65.0%	60.9%
Southern California	68.1%	63.3%
Penn State	69.1%	63.7%
Ohio State	75.9%	69.1%
Cincinnati	81.6%	69.7%

- Multilevel models help rate groups with varying sample sizes
- Predictions are better than a naive classical approach
- Care must be taken when examining specific predictions
- Hierarchical models help us fit a variety of formulations

- Data and code used in the making of this presentation available at http://www.basketballgeek.com/downloads/rw09.zip
- I.Ntzoufras: Bayesian Modeling Using WinBUGS
- A.Gelman, J.Hill: Data Analysis Using Regression and Multilevel/Hierarchical Models
- I.Witten, E.Frank: Data Mining
- 6 A.Agresti: An Intro to Categorical Data Analysis
- Section 2015 Control Contro

э.